166 research outputs found

    MPM based simulation for various solid deformation

    Get PDF
    Solid materials are responsible for many interesting phenomena. There are various types of them such as deformable objects and granular materials. In this paper, we present an MPM based framework to simulate the wide range of solid materials. In this framework, solid mechanics is based on the elastoplastic model, where we use von Mises criterion for deformable objects, and the Drucker-Prager model with non-associated plastic flow rules for granular materials. As a result, we can simulate different kinds of deformation of deformable objects and sloping failure for granular materials

    Star Clusters

    Full text link
    This review concentrates almost entirely on globular star clusters. It emphasises the increasing realisation that few of the traditional problems of star cluster astronomy can be studied in isolation: the influence of the Galaxy affects dynamical evolution deep in the core, and the spectrum of stellar masses; in turn the evolution of the core determines the highest stellar densities, and the rate of encounters. In this way external tidal effects indirectly influence the formation and evolution of blue stragglers, binary pulsars, X-ray sources, etc. More controversially, the stellar density appears to influence the relative distribution of normal stars. In the opposite sense, the evolution of individual stars governs much of the early dynamics of a globular cluster, and the existence of large numbers of primordial binary stars has changed important details of our picture of the dynamical evolution. New computational tools which will become available in the next few years will help dynamical theorists to address these questions.Comment: 10 pages, 3 figures, Te

    Discreet element modeling of under sleeper pads using a box test

    Get PDF
    It has recently been reported that under sleeper pads (USPs) could improve ballasted rail track by decreasing the sleeper settlement and reducing particle breakage. In order to find out what happens at the particle-pad interface, discrete element modelling (DEM) is used to provide micro mechanical insight. The same positive effects of USP are found in the DEM simulations. The evidence provided by DEM shows that application of a USP allows more particles to be in contact with the pad, and causes these particles to transfer a larger lateral load to the adjacent ballast but a smaller vertical load beneath the sleeper. This could be used to explain why the USP helps to reduce the track settlement. In terms of particle breakage, it is found that most breakage occurs at the particle-sleeper interface and along the main contact force chains between particles under the sleeper. The use of USPs could effectively reduce particle abrasion that occurs in both of these regions

    Numerical study of nonlinear heat transfer from a wavy surface to a high permeability medium with pseudo-spectral and smoothed particle methods

    Get PDF
    Motivated by petro-chemical geological systems, we consider the natural convection boundary layer flow from a vertical isothermal wavy surface adjacent to a saturated non-Darcian high permeability porous medium. High permeability is considered to represent geologically sparsely packed porous media. Both Darcian drag and Forchheimer inertial drag terms are included in the velocity boundary layer equation. A high permeability medium is considered. We employ a sinusoidal relation for the wavy surface. Using a set of transformations, the momentum and heat conservation equations are converted from an (x, y) coordinate system to an (x,η) dimensionless system. The two-point boundary value problem is then solved numerically with a pseudo-spectral method based on combining the Bellman–Kalaba quasi linearization method with the Chebyschev spectral collocation technique (SQLM). The SQLM computations are demonstrated to achieve excellent correlation with smoothed particle hydrodynamic (SPH) Lagrangian solutions. We study the effect of Darcy number (Da), Forchheimer number (Fs), amplitude wavelength (A) and Prandtl number (Pr) on the velocity and temperature distributions in the regime. Local Nusselt number is also computed for selected cases. The study finds important applications in petroleum engineering and also energy systems exploiting porous media and undulating (wavy) surface geometry. The SQLM algorithm is shown to be exceptionally robust and achieves fast convergence and excellent accuracy in nonlinear heat transfer simulations

    KIDMAP, a web based system for gathering patients' feedback on their doctors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The gathering of feedback on doctors from patients after consultations is an important part of patient involvement and participation. This study first assesses the 23-item Patient Feedback Questionnaire (PFQ) designed by the Picker Institute, Europe, to determine whether these items form a single latent trait. Then, an Internet module with visual representation is developed to gather patient views about their doctors; this program then distributes the individualized results by email.</p> <p>Methods</p> <p>A total of 450 patients were randomly recruited from a 1300-bed-size medical center in Taiwan. The Rasch rating scale model was used to examine the data-fit. Differential item functioning (DIF) analysis was conducted to verify construct equivalence across the groups. An Internet module with visual representation was developed to provide doctors with the patient's online feedback.</p> <p>Results</p> <p>Twenty-one of the 23 items met the model's expectation, namely that they constitute a single construct. The test reliability was 0.94. DIF was found between ages and different kinds of disease, but not between genders and education levels. The visual approach of the KIDMAP module on the WWW seemed to be an effective approach to the assessment of patient feedback in a clinical setting.</p> <p>Conclusion</p> <p>The revised 21-item PFQ measures a single construct. Our work supports the hypothesis that the revised PFQ online version is both valid and reliable, and that the KIDMAP module is good at its designated task. Further research is needed to confirm data congruence for patients with chronic diseases.</p

    Evolution of sex-specific pace-of-life syndromes: genetic architecture and physiological mechanisms

    Get PDF
    Sex differences in life history, physiology, and behavior are nearly ubiquitous across taxa, owing to sex-specific selection that arises from different reproductive strategies of the sexes. The pace-of-life syndrome (POLS) hypothesis predicts that most variation in such traits among individuals, populations, and species falls along a slow-fast pace-of-life continuum. As a result of their different reproductive roles and environment, the sexes also commonly differ in pace-of-life, with important consequences for the evolution of POLS. Here, we outline mechanisms for how males and females can evolve differences in POLS traits and in how such traits can covary differently despite constraints resulting from a shared genome. We review the current knowledge of the genetic basis of POLS traits and suggest candidate genes and pathways for future studies. Pleiotropic effects may govern many of the genetic correlations, but little is still known about the mechanisms involved in trade-offs between current and future reproduction and their integration with behavioral variation. We highlight the importance of metabolic and hormonal pathways in mediating sex differences in POLS traits; however, there is still a shortage of studies that test for sex specificity in molecular effects and their evolutionary causes. Considering whether and how sexual dimorphism evolves in POLS traits provides a more holistic framework to understand how behavioral variation is integrated with life histories and physiology, and we call for studies that focus on examining the sex-specific genetic architecture of this integration

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
    corecore